Skin embryology and development

Structure and Function of the Skin
AAD Meeting 2019

Bryan Sun, M.D. Ph.D.
Department of Dermatology
University of California San Diego
Outline

- Why study embryology and development of the skin?
- Skin: Key structures
- Key stages of human embryology
- Molecular principles of development
- Development of the epidermis
- Development of the dermis
- Development of skin appendages
- Clinical scenarios and correlations
Why study embryology and development of the skin?

Better understanding of skin diseases

NF-κB pathway

Incontinentia Pigmenti
Why study embryology and development of the skin?

Tissue engineering of functional skin

Why study embryology and development of the skin?

Stem cell biology and personalized medicine
Outline

• Why study embryology and development of the skin?
• Skin: Key structures
 • Key stages of human embryology
 • Molecular principles of development
 • Development of the epidermis
 • Development of the dermis
 • Development of skin appendages
• Clinical scenarios and correlations
Structure of the skin
Outline

• Why study embryology and development of the skin?
• Skin: Key structures
• Key stages of human embryology
 • Molecular principles of development
 • Development of the epidermis
 • Development of the dermis
 • Development of skin appendages
• Clinical scenarios and correlations
Key stages of human embryology

9 months
Key stages of human embryology
Key stages of human embryology

Carlson, Human Embryology (2012)
Key stages of human embryology

Carlson, Human Embryology (2012)
Formation of neural tissue
Major tissue embryological derivatives

<table>
<thead>
<tr>
<th>Ectoderm</th>
<th>Mesoderm</th>
<th>Endoderm</th>
</tr>
</thead>
<tbody>
<tr>
<td>All nervous tissue</td>
<td>Skeletal, smooth, and cardiac muscle</td>
<td>Epithelium of digestive tract (except that of oral and anal cavities)</td>
</tr>
<tr>
<td>Epidermis of skin and epidermal derivatives (hairs, hair follicles, sebaceous and sweat glands, nails)</td>
<td>Cartilage, bone, and other connective tissues</td>
<td>Glandular derivatives of digestive tract (liver, pancreas)</td>
</tr>
<tr>
<td>Cornea and lens of eye</td>
<td>Blood, bone marrow, and lymphoid tissues</td>
<td>Epithelium of respiratory tract, auditory tube, and tonsils</td>
</tr>
<tr>
<td>Epithelium of oral and nasal cavities, of paranasal sinuses, and of anal canal</td>
<td>Endothelium of blood vessels and lymphatics</td>
<td>Thyroid, parathyroid, and thymus glands</td>
</tr>
<tr>
<td>Tooth enamel</td>
<td>Serosae of ventral body cavity</td>
<td>Epithelium of reproductive ducts and glands</td>
</tr>
<tr>
<td>Epithelium of pineal and pituitary glands and adrenal medulla</td>
<td>Fibrous and vascular tunics of eyes</td>
<td>Epithelium of urethra and bladder</td>
</tr>
<tr>
<td>Melanocytes</td>
<td>Synovial membranes of joint cavities</td>
<td></td>
</tr>
<tr>
<td>Some cranial bones and branchial cartilages (derived from neural crest)</td>
<td>Organs of urogenital system (ureters, kidneys, gonads, and reproductive ducts)</td>
<td></td>
</tr>
</tbody>
</table>
Embryonic origin of key skin derivatives

<table>
<thead>
<tr>
<th>Skin component</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epidermis:</td>
<td></td>
</tr>
<tr>
<td>Keratinocytes</td>
<td>Ectoderm</td>
</tr>
<tr>
<td>Melanocytes</td>
<td>Ectoderm (neural crest)</td>
</tr>
<tr>
<td>Dermis:</td>
<td></td>
</tr>
<tr>
<td>Fibroblasts (trunk/limbs)</td>
<td>Mesoderm</td>
</tr>
<tr>
<td>Fibroblasts (scalp/face)</td>
<td>Ectoderm (neural crest)</td>
</tr>
</tbody>
</table>
Outline

• Why study embryology and development of the skin?
• Skin: Key structures
• Key stages of human embryology
 • Molecular principles of development
 • Development of the epidermis
 • Development of the dermis
 • Development of skin appendages
• Clinical scenarios and correlations
Principle: TFs and signaling molecules direct cell fates

Transcription Factor:
Protein that binds specific DNA sequence to activate transcription of a region of DNA to RNA

Signaling molecule:
Protein that transmits information to a cell either by binding to a receptor on the surface or the inside of a cell

Signal transduction
A cascade of chemical signals that leads to a specific molecule or target reaction

Principle: Signal transduction pathways

Signal transduction pathways are often denoted by key ligands and transduction molecules in the canonical pathway

Principle: Organs and tissues form by restriction and differentiation

Outline

• Why study embryology and development of the skin?
• Skin: Key structures
• Key stages of human embryology
• Molecular principles of development
• Development of the epidermis
• Development of the dermis
• Development of skin appendages
• Clinical scenarios and correlations
Specification of the epidermis

Wnt/β-catenin

Fibroblast growth factors (FGFs)

Bone morphogenic proteins (BMPs)

Fuchs, Nature (2007)
Development of the epidermis

• By the end of the first month of development, single layer (simple) epithelium proliferates to form a outer covering. This is the periderm.
Development of the epidermis

- In 2nd-3rd month of development, proliferation of an new underlying basal layer begins to “push” these pericytes upwards.
Development of the epidermis

- In 4th-5th month of development, basal layer cells proliferate to form intermediate layers and sloughs off the periderm into the amniotic fluid.
The fully stratified epidermis
Epidermal stratification

Key pathways required for stratification

- Notch
- Nuclear factor-kB (NF-kB)
- Mitogen-activated protein kinase (MAPK)

Key transcription factors/regulators

- p63
- KLF4
- miR-203
- C/EBP
- GRHL3
p63 is an essential TF for epidermal development
Notch and miR-203 demarcate epidermal differentiation compartments

Outline

• Why study embryology and development of the skin?
• Skin: Key structures
• Key stages of human embryology
• Molecular principles of development
• Development of the epidermis
• Development of the dermis
• Development of skin appendages
• Clinical scenarios and correlations
Two lineages of dermal fibroblasts

Papillary Dermis
• Structural interaction with epidermis via dermal papillae (rete ridges)
• Looser and finer connective tissue

Reticular Dermis
• Extends from superficial plexus to hypodermis
• Denser connective tissue

Two lineages of dermal fibroblasts

- Multipotent Fibroblasts
 - Wnt/β-catenin
 - TGF-β

- Transforming growth factor

 - Papillary fibroblasts
 - Hair follicle formation
 - Piloerection

 - Reticular fibroblasts
 - Adipocyte formation
 - Wound healing

Outline

• Why study embryology and development of the skin?
• Skin: Key structures
• Key stages of human embryology
• Molecular principles of development
• Development of the epidermis
• Development of the dermis
• Development of skin appendages
• Clinical scenarios and correlations
Patterns of appendage development

Sequential and reciprocal crosstalk between overlying epithelium and underlying mesenchyme

Placodes in different appendages

Tissue interactions form the skin
Reciprocal signaling forms hair follicles

Wnt/β-catenin

↓

Edar (NF-kB)

Sonic hedgehog Fgfs

↓

Cyclin D
Other epidermal appendages: Sweat glands

EDA/EDAR/NF-kB
Wnt-βcatenin
Sonic hedgehog
BMP

Outline

- Why study embryology and development of the skin?
- Skin: Key structures
- Key stages of human embryology
- Molecular principles of development
- Development of the epidermis
- Development of the dermis
- Development of skin appendages
- Clinical scenarios and correlations
Clinical correlations

- In 4th-5th month of development, epidermal basal layer cells proliferate to form intermediate layers and sloughs off the periderm into the amniotic fluid. What happens if the periderm does not slough off <i>in utero</i>?
Clinical correlations

- In **epidermal and sebaceous nevi**, there is epidermal acanthosis. What signaling pathway is commonly mutated to cause these lesions?
Epidermal stratification

Pathways required for stratification
- Notch
- Nuclear factor-kB (NF-kB)
- Mitogen-activated protein kinase (MAPK)

Key transcriptional regulators
- p63
- KLF4
- GRHL3
- miR-203
- C/EBP
Clinical correlations

- Mutations in the EDAR gene cause loss-of-function of this protein and its related pathway. What is the associated disease and what skin components are affected?
Similarities between appendage development
Summary: Take Home Messages

• Studying skin embryology and development helps us understand skin diseases and provides a basis for tissue engineering and regeneration.

• Transcription factors, signaling molecules, and receptors help determine cell/tissue restriction and differentiation.

• Reciprocal epithelial-mesenchymal signaling forms the basis for appendage development.

• There is still much about development of the skin that is unknown.
Skin embryology and development

Bryan Sun, M.D. Ph.D.
Department of Dermatology
University of California San Diego

bryansun@ucsd.edu