Cutaneous T-cell Lymphoma: Current and New Treatment Strategies

Auris Huen, MD, PharmD
Assistant Professor
Department of Dermatology
July 27, 2019
Conflicts of Interest

| Research Support/P.I. | Miragen, Seattle Genetics, Rhizen, Elorac, Galderma |

Off label use of medications
Outline

• Cutaneous T-cell lymphoma overview

• Current management guidelines

• What’s new in T-cell cutaneous lymphoma
 • New treatment targets
 • Diagnostic accuracy (reactive vs malignant)
<table>
<thead>
<tr>
<th>Cutaneous T-cell and NK-cell lymphomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosis fungoides</td>
</tr>
<tr>
<td>MF variants and subtypes</td>
</tr>
<tr>
<td>Folliculotropic MF</td>
</tr>
<tr>
<td>Pagetoid reticulosis</td>
</tr>
<tr>
<td>Granulomatous slack skin</td>
</tr>
<tr>
<td>Sézary syndrome</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Adult T-cell leukemia/lymphoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary cutaneous CD30^+ lymphoproliferative disorders</td>
</tr>
<tr>
<td>Primary cutaneous anaplastic large cell lymphoma</td>
</tr>
<tr>
<td>Lymphomatoid papulosis</td>
</tr>
<tr>
<td>Subcutaneous panniculitis-like T-cell lymphoma*</td>
</tr>
<tr>
<td>Extranodal NKT-cell lymphoma, nasal type</td>
</tr>
<tr>
<td>Primary cutaneous peripheral T-cell lymphoma, unspecified</td>
</tr>
<tr>
<td>Primary cutaneous aggressive epidermotropic CD8^+ T-cell lymphoma (provisional)</td>
</tr>
<tr>
<td>Cutaneous γδ T-cell lymphoma (provisional)</td>
</tr>
<tr>
<td>Primary cutaneous CD4^+ small/medium-sized pleomorphic T-cell lymphoma (provisional)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cutaneous B-cell lymphomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary cutaneous marginal zone B-cell lymphoma</td>
</tr>
<tr>
<td>Primary cutaneous follicle center lymphoma</td>
</tr>
<tr>
<td>Primary cutaneous diffuse large B-cell lymphoma, leg type</td>
</tr>
<tr>
<td>Primary cutaneous diffuse large B-cell lymphoma, other</td>
</tr>
<tr>
<td>Intravascular large B-cell lymphoma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Precursor hematologic neoplasm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4^+/CD56^+ hematodermic neoplasm (blastic NK-cell lymphoma)†</td>
</tr>
</tbody>
</table>
Indolent vs Aggressive

<table>
<thead>
<tr>
<th>INDOLENT</th>
<th>AGGRESSIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycosis Fungoides</td>
<td>Sézary Syndrome</td>
</tr>
<tr>
<td>Folliculotropic MF</td>
<td>Primary cutaneous NK/T cell lymphoma, nasal-type</td>
</tr>
<tr>
<td>Pagetoid Reticulosis</td>
<td>Primary cutaneous aggressive CD8+ T-cell lymphoma</td>
</tr>
<tr>
<td>Granulomatous Slack Skin</td>
<td>Primary cutaneous γ/δ T cell lymphoma</td>
</tr>
<tr>
<td>Primary cutaneous anaplastic large cell lymphoma (ALCL)</td>
<td>Primary cutaneous peripheral T-cell lymphoma, unspecified</td>
</tr>
<tr>
<td>Lymphomatoid papulos (LyP)**</td>
<td>Mycosis Fungoides with large cell transformation</td>
</tr>
<tr>
<td>Primary cutaneous CD4+ small/medium pleomorphic T-cell lymphoproliferative disorder</td>
<td></td>
</tr>
<tr>
<td>Subcutaneous Panniculitis-like T cell Lymphoma (SPTCL)</td>
<td></td>
</tr>
</tbody>
</table>
Mycosis Fungoides

• Typically the neoplastic T cell in CTCL express **mature memory** T-cell markers
 - TCRαβ (Beta-F1+)
 - CD3+**CD4+**CD8-CD5+CD45RA-**CD45RO**+

• Clonal

• **Loss of CD7 or CD26**
 - CD7 = glycoprotein normally expressed in 80-90% of CD4+ T cells and all CD8+ T cells and most NK cells
 - CD26 = glycosylated transmembrane protein that possesses proteolytic enzyme activity and is expressed on majority of circulating T cells
MF/SS: CD4+ Th2 phenotype

Loss of CD7, CD26, CD3

Malignant T-Cell

T\(_\text{H}2\) Cytokines:
- IL-4
- IL-5
- IL-10

↓

IgE

Th1 effects

Eosinophilia

↓

Th1 effects

Cell-mediated immunity

↓

Dendritic cells

Inherent immunosuppression

Courtesy of Dr. Alain Rook
Clinical Presentation
• Patches
• Plaques
• Tumors
• Erythroderma
Sezary Syndrome

- Keratoderma
- Erythroderma
- Ectropion

Courtesy of Dr. E Kim
Variants of Mycosis Fungoides

- Hypopigmented/Vitiligenous
- Pagetoid Reticulosis
- Follicular (+/- follicular mucinosis)
- Syringotropic
- Granulomatous MF and Granulomatous Slack Skin
- Bullous/Vesicular
- Palmoplantar
- Pigmented Purpuric Dermatosis-like
- Interstitial MF

- Hyperkeratosis/Verrucous
- Vegetating/Papillomatous
- Icthyosiform
- Acanthosis nigricans-like
- Perioral dermatitis-like
- PLEVA-like
- Poikilodermatous
- Pustular
- Parapsoriasis
- Zosteriform
- Invisible
MF/SS Diagnosis

• Challenging
 • Average time from appearance lesions to diagnosis is 3-6 years
• Routine histology
 • >1 punch biopsy, off topical therapy
• Immunophenotyping
 • Immunohistochemistry, flow cytometry
• Molecular methods
 • TCR gene rearrangements (clonality)
• Gene sequencing
• Clinical correlation
TNMB Classification Staging for MF/SS

T (Skin)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Limited patch/plaques (<10% of total skin surface)</td>
</tr>
<tr>
<td>T2</td>
<td>Generalized patch/plaques (≥ 10% of total skin surface)</td>
</tr>
<tr>
<td>T3</td>
<td>Tumors</td>
</tr>
<tr>
<td>T4</td>
<td>Generalized erythema</td>
</tr>
</tbody>
</table>

N (Nodes)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>No clinically abnormal LN2</td>
</tr>
<tr>
<td>N1</td>
<td>Clinically abnormal LN2; histopath Dutch Gr 1 or NCI LN0-2 (clone+/-)</td>
</tr>
<tr>
<td>N2</td>
<td>Clinically abnormal LN2; histopath Dutch Gr 2 or NCI LN3 (clone+/-)</td>
</tr>
<tr>
<td>N3</td>
<td>Clinically abnormal LN2; histopath Dutch Gr 3 or NCI LN4 (clone+/-)</td>
</tr>
<tr>
<td>Nx</td>
<td>Clinically abnormal LNs; no histo info</td>
</tr>
</tbody>
</table>

M (Viscera)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>No visceral involvement</td>
</tr>
<tr>
<td>M1</td>
<td>Visceral involvement</td>
</tr>
</tbody>
</table>

B (Blood)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>No significant blood involvement</td>
</tr>
<tr>
<td>B1</td>
<td>Low blood tumor burden</td>
</tr>
<tr>
<td>B2</td>
<td>High blood tumor burden</td>
</tr>
</tbody>
</table>
Lymph Node Grading MF/SS

<table>
<thead>
<tr>
<th>Updated ISCL/EORTC classification</th>
<th>Dutch system<sup>58</sup></th>
<th>NCI-VA classification<sup>13,57,59</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>N<sub>1</sub></td>
<td>Grade 1: dermatopathic lymphadenopathy (DL)</td>
<td>LN<sub>0</sub>: no atypical lymphocytes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN<sub>1</sub>: occasional and isolated atypical lymphocytes (not arranged in clusters)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN<sub>2</sub>: many atypical lymphocytes or in 3-6 cell clusters</td>
</tr>
<tr>
<td>N<sub>2</sub></td>
<td>Grade 2: DL; early involvement by MF (presence of cerebriform nuclei > 7.5 (\mu)m)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>LN<sub>3</sub>: aggregates of atypical lymphocytes; nodal architecture preserved</td>
</tr>
<tr>
<td>N<sub>3</sub></td>
<td>Grade 3: partial effacement of LN architecture; many atypical cerebriform mononuclear cells (CMCs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grade 4: complete effacement</td>
<td>LN<sub>4</sub>: partial/complete effacement of nodal architecture by atypical lymphocytes or frankly neoplastic cells</td>
</tr>
</tbody>
</table>
Blood Compartment Grading in MF/SS

• B0 No significant blood involvement
 • ≤5% of peripheral lymphocytes are atypical (by morphology of Sezary cells) or <15% CD4+/CD26- or CD4+/CD7- cells (by flow cytometry)

• B1 Low blood tumor burden
 • >5% peripheral lymphocytes are atypical (by morphology of Sezary cells) or ≥15% CD4+/CD26- or CD4+/CD7- cells (by flow cytometry)

• B2 High blood tumor burden
 • ≥1000 peripheral lymphocytes are atypical (by morphology of Sezary cells) or ≥30% CD4+/CD26- or ≥40% CD4+/CD7- cells (by flow cytometry), or CD4/CD8 ≥10

New EORTC Proposal

• B0 <250/µL absolute cells
• B1 Low blood tumor burden
 • 250-<1000 /µL absolute cells
• B2 High blood tumor burden
 • ≥1000/µL absolute cells

• T-cell blood clone

Eur J Cancer 2018 93:47-56
Flow Cytometry Report

Specimen Type: Blood

Interpretation: ABERRANT T CELL POPULATION IDENTIFIED: INCREASED CD3+CD4+CD26- CELLS.

Comment: 98% of the CD3+CD4+CD26- T-cells were positive for V-Beta 13.1.

Please refer to the HP FC MF SS Followup for quantitation of lymphocyte subsets.

Aberrant cells are % of total analyzed events.
Aberrant cells are 84% of lymphocytes.

Aberrant Population: T cells

Aberrant Cell Phenotype:

<table>
<thead>
<tr>
<th>Marker</th>
<th>Result</th>
<th>Intensity</th>
<th>CD3+CD8+ Absolute</th>
<th>82 - 831 cells/mcL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>Positive</td>
<td></td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>CD4</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD7</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD26</td>
<td>Negative</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Intensity levels are described relative to normal mature T cells)

Markers Assessed: CD3, CD4, CD7, CD8, CD26, CD45, VB13.1, VB13.6, VB8

Percentage of lymphocytes:

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Result</th>
<th>Reference Range</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3+</td>
<td>95.5</td>
<td>64.6 - 88.6</td>
<td>%</td>
</tr>
<tr>
<td>CD3+CD4+</td>
<td>92.6</td>
<td>37.7 - 64.2</td>
<td>%</td>
</tr>
<tr>
<td>CD3+CD4+ Absolute</td>
<td>3511</td>
<td>188 - 1883</td>
<td>cells/mcL</td>
</tr>
<tr>
<td>CD3+CD8+</td>
<td>2.8</td>
<td>10.9 - 35.3</td>
<td>%</td>
</tr>
</tbody>
</table>
Staging

<table>
<thead>
<tr>
<th>Clinical Staging/Classification for MF/SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>IA</td>
</tr>
<tr>
<td>IB</td>
</tr>
<tr>
<td>IB</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IIIA</td>
</tr>
<tr>
<td>IIIB</td>
</tr>
<tr>
<td>IVA</td>
</tr>
<tr>
<td>IVAr</td>
</tr>
</tbody>
</table>

NCCN.org and Olsen et al, Blood 2007
Goals of Therapy for CTCL

IDEAL
- Cure
- Extend Life
- Alleviate Symptoms
- Durable Response
- High Response Rate

ACTUAL
- Alleviate Symptoms
- Variable Response Duration
- Extend Life
- Cure
Treatment Approach in MF and SS

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>Limited Dz, T1</td>
<td>Topical steroids, Topical retinoid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Topical nitrogen mustard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NB-UVB/PUVA ± Bexarotene or IFN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TSEBT, Bexarotene or IFN</td>
</tr>
<tr>
<td>IB/IIA</td>
<td>Generalized, T2</td>
<td>Clinical Trial (TLR agonist, miRNA inhibitors, new MoAb eg. CD47, BET inhibitor, IL-2 fusion protein (CD25))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Single-agent Monoclonal Antibodies/HDAC (Brentuximab, Mogamulizumab, Romidepsin)</td>
</tr>
<tr>
<td>IIB</td>
<td>Tumors, T3</td>
<td>Single Agent Chemotherapy (Pralatrexate, Gemcitabine, Doxorubicin)</td>
</tr>
<tr>
<td></td>
<td>Erythroderma, T4</td>
<td>Combination Chemo</td>
</tr>
<tr>
<td>IV</td>
<td>Extracutaneous Dz</td>
<td>ECP± Bexarotene, IFN</td>
</tr>
</tbody>
</table>
Topical Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Response</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td>At least PR: 94% in T1 and 82% in T2 (high potency class I-III)</td>
<td>Variable</td>
</tr>
<tr>
<td>Nitrogen Mustard</td>
<td>CR: 70-80% in T1 or 50-60% in T2 (aqueous); ORR 58% in T1 and 47% in T2 (by CAILS) in gel form</td>
<td>AWP $4026 for 60g tube (Valchlor Commercial Gel Formulation)</td>
</tr>
</tbody>
</table>
| Bexarotene or Tazotene Gel | ORR 63% (CR21%) (B) At least PR in 58% of patients (T) | AWP Bexarotene Gel $34,990 per 60g tube
AWP Tazarotene Gel 0.1% $790 per 60g tube |
| Imiquimod cream | PR 50% in T1-T3 disease | AWP Zyclara 3.75% $1296 per 7.5gram pump |
Phototherapy

- Narrow Band UVB: 311-312 nm-1 emission
 - CR 54-90% in patients with stage IA to IIA

- Psoralen Plus UVA (PUVA):
 - CR 85% (Stage IA), 65% (Stage IB)

- Risk for skin cancer
Radiation Therapy

• Localized treatment
 • Use: Doses range from 10-30 Gy for each treatment field
 • Newer studies showing efficacy with $2\text{Gy} \times 2$
 • CR rates 95-100%

• Total skin electron beam (TSEB)
 • Use: 30 Gy; lower doses used 12 Gy (Stanford)
 • CR rates >75% in traditional dosing: ORR 88% in 12 Gy

• Side effects: burn, dermatitis, radiation recall
Oral Retinoids

• Bexarotene
 • Indication: Patients with advanced stage MF and SS, or refractory early stage
 • Pharmacologic category: Retinoid RXR receptor agonist
 • ORR 45% (CR 2%)
 • Use: The manufacturer's recommended dosing is 300mg/m²/day.
 • Side effects: severe central hypothyroidism, hyperlipidemia
 • AWP: Bexarotene 300mg daily: $25,760 per month

• Isotretinoin and acitretin
 • Pharmacologic category: Retinoid RAR receptor agonist
 • AWP: Isotretinoin 30mg daily: $370 per month
 • AWP: Acitretin 25mg daily: $1153 per month
Interferons

• Indication: As a second line therapy in patients with stage IA and IB disease and a first line for those with more advanced stages

• Pharmacologic category: Biologic response modifier/Immune potentiator

• Interferon alfa and Interferon gamma

• Response: PR 20-40% CR 4-14% in varying doses

• Typically used in combination treatment with phototherapy or multimodality approach

• AWP: Interferon alfa 2b 1.5MU TIW- $667 per month
Folate Antagonists

- Methotrexate and Pralatrexate
- Dihydrofolate reductase inhibitors
- AWP: MTX 25mg weekly: $150 per month
- AWP: PDX 15mg/m2 weekly 3 of 4 weeks: $16,875
Histone Deacetylase Inhibitors

- Indication: Patients with more advanced disease as a second line agent, or as a first line in those with Stage IV or Sezary Syndrome
- Mechanism of action: small molecules that interact with histone acetyltransferases and histone deactylases that modify histone acetylation in proteins
- Vorinostat and Romidepsin only agents approved for cutaneous lymphoma
- Vorinostat (oral): ORR 29% (phase II)
- Romidepsin (IV): ORR 34% and CR 6% (global response)
- Side effects: GI, QT prolongation (electrolytes)
- AWP: Vorinostat 400mg daily: $14,911 per month
- AWP: Romidepsin 14mg/m2/week 3 of 4 weeks: $31,608 per month
Photopheresis
What’s New?
Brentuximab Vedotin (BV)

• Anti-CD30 antibody drug conjugate to cytotoxin monomethyl auristatin E (MMAE)

• Two Phase II open label studies with high response rates in CTCL

• Phase III randomized trial reported improved response compared to physician choice (Methotrexate/Bexarotene)

• BV was added into NCCN guidelines

• FDA approval for CD30 expressing MF and pcALCL
<table>
<thead>
<tr>
<th>Clinical Trials</th>
<th>Phase/Trial Design</th>
<th>Number of evaluable patients</th>
<th>CD30 Eligibility</th>
<th>ORR</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duvic et al J. Clin. Oncol. 33(32), 3759–3765 (2015)</td>
<td>Phase II Open label, single center</td>
<td>28</td>
<td>CD30+ (no lower limit but expression graded)</td>
<td>15 (54%)</td>
<td>2 (7%)</td>
</tr>
<tr>
<td>Kim et al J. Clin. Oncol. 33(32), 3750–3758 (2015)</td>
<td>Phase II Open label, investigator initiated, multicenter trial</td>
<td>30</td>
<td>negligible to 100% CD30 expression levels</td>
<td>21 (70%)</td>
<td>1 (3%)</td>
</tr>
<tr>
<td>Prince et al Lancet 390 (10094), 555–566 (2017)</td>
<td>Phase III Randomized open label, multicenter, international study</td>
<td>48</td>
<td>CD30-positive (10% tumor cells expressing CD30)</td>
<td>31 (65%)</td>
<td>5 (10%)</td>
</tr>
</tbody>
</table>
CD30 expression varies in same patient
Mogamulizumab in CTCL

- Anti-CC chemokine 4 (CCR4) monoclonal antibody

- CCR4 is involved in skin trafficking of lymphocytes
 - Expressed in CTCL including MF and SS, ATLL, PTCL

- FDA approval 2018 for relapsed refractory mycosis fungoides or Sezary syndrome after at least one prior systemic therapy
Response to Mogamulizumab in phase I/II trial

<table>
<thead>
<tr>
<th>Patients</th>
<th>Blood% (n)</th>
<th>Skin% (n)</th>
<th>Nodes% (n)</th>
<th>Global% (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Patients</td>
<td>95 (18)</td>
<td>42 (16)</td>
<td>25 (7)</td>
<td>37 (14)</td>
</tr>
<tr>
<td>Sezary</td>
<td>94 (16)</td>
<td>53 (9)</td>
<td>33 (5)</td>
<td>47 (8)</td>
</tr>
<tr>
<td>MF</td>
<td>100 (2)</td>
<td>33 (7)</td>
<td>15 (2)</td>
<td>28 (6)</td>
</tr>
</tbody>
</table>
Adverse Events

<table>
<thead>
<tr>
<th>AE</th>
<th>All Grades (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nausea</td>
<td>31</td>
</tr>
<tr>
<td>Chills</td>
<td>24</td>
</tr>
<tr>
<td>Infusion Reaction</td>
<td>21</td>
</tr>
<tr>
<td>Headache</td>
<td>21</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>19</td>
</tr>
<tr>
<td>Fatigue</td>
<td>17</td>
</tr>
<tr>
<td>Rash</td>
<td>17</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>14</td>
</tr>
</tbody>
</table>

Blood 2015; 125 (12) 1883-1889
Active Clinical Trials

• Early stage
 • SGX 301 (Hypericin)
 • TLR agonists (TLR7 and 8)
 • topical resiquimod

• Advanced stage
 • RP 6530 (PI3K inhibitor)
 • E7777 (Denileukin difftitox)
 • MRG-106 microRNA antagonist
 • BET inhibitor
Early Stage Disease- NEW

- SGX 301 (Synthetic Hypericin)
 - Natural compound found in stems and petals of plants in family of *hypericum*
 - Photosensitizing agent to visible light
 - Cell death through O2 radicals, activity in malignant T cells in vitro
 - Stage IA, IB, IIA
 - Application to isolated lesions day before and come for light treatment (non UV) the next day twice weekly
Early Stage Disease-NEW

• Resiquimod (TLR 7 and 8 agonist)
 • Phase II
 • Topical Gel
 • Directly activates innate immune cells expressing TLR7 and/or 8, resulting in innate and adaptive immune modulation
 • Stage IA, IB, IIA
Advanced Stage-NEW

- RP6530- Phosphoinositide-3-kinase (PI3K) inhibitor (dual gamma and delta)
 - PI3K involved in cell function, proliferation, trafficking, immunity
 - Oral medication for relapsed/refractory patients
 - Phase I/Ib, dose escalation study
 - Collaboration with lymphoma department (PTCL)
 - Adverse effects include rash, LFT changes
Advanced Stage-NEW

• E7777 (purified Denileukin diftitox)
 • Phase III
 • IL-2 receptor fusion protein to Diphtheria toxin
 • IL-2 receptor with 3 domains (CD25, CD122, CD132)
 • Toxicity associated with previous version of DD includes capillary leak syndrome, hypersensitivity reaction
 • This is an improved formulation of DD
 • Multi-center open-label single-arm study in Stage IA-IVA
Advanced Stage-NEW

• MRG-106
 • Oligonucleotide antagonist of microRNA miR-155-5p
 • MicroRNAs are small non-coding RNAs acting as negative gene regulators
 • MiR-155-5p is linked to treatment resistance and poor prognosis, upregulated in lymphoma
 • Phase II randomized study vs vorinostat in relapsed/refractory patients Stage I, II, III
Advanced Stage-NEW

- Bromodomain (BET) proteins inhibitor
- Epigenetic protein upregulated in expression in lymphomas and associated in MF and SS
- Oral capsule
- Adverse effects include GI (nausea, weight loss), QTC prolongation, myelosuppression
Other Options

• Stem cell transplantation

• New monoclonal antibody targets
 • KIR (anti-killer cell immunoglobulin-like receptor 3DL2)
 • Anti-CD47 (“eat me”) signaling antibody
 • PD-1 inhibitor immune checkpoint inhibitors
Other Updates
High-Throughput Sequencing

• Genetic sequencing potential applications
 • Improvement in diagnosis
 • Gene profile and study of disease
 • Determination of remission and prognosis
Supportive Care
Association of Cutaneous Lymphoma and Staphylococcus Infection

RAPID COMMUNICATION

Association of Erythrodermic Cutaneous T-Cell Lymphoma, Superantigen-Positive Staphylococcus aureus, and Oligoclonal T-Cell Receptor Vβ Gene Expansion

By Clotilde M. Jackow, Jennifer C. Cather, Vicki Hearne, Arisa T. Asano, James M. Musser, and Madeleine Duvic

Prevalence and treatment of *Staphylococcus aureus* colonization in patients with mycosis fungoides and Sézary syndrome

R. Talpur, R. Bassett* and M. Duvic

Division of Internal Medicine, Department of Dermatology and *The Division of Quantitative Sciences, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030–4095, U.S.A.
Wound Care

- High bacteria and/or biofilm can be obstacles to healing
- MF patients typically with thick hyperkeratotic plaques preventing penetration of topical agents
- Physical therapy consult
Pruritus in Cutaneous Lymphoma

Report

Prevalence and severity of pruritus in cutaneous T cell lymphoma

Alok Vij¹, MD, and Madeleine Duvic², MD

Gabapentin for the Treatment of Cutaneous Lymphoma Associated Pruritus

Results

- 290 patients with cutaneous lymphoma were treated with gabapentin and/or pregabalin from 2005 to 2015
- 82 patients met criteria with adequate follow-up information
- Majority of patients were treated with gabapentin (N=81) vs pregabalin (N=1)

Chin et al. Presented at Medical Dermatology Society 2017
Gabapentin for the Treatment of Cutaneous Lymphoma Associated Pruritus

Results

PERCENTAGE REPORTING IMPROVEMENT

- First Follow-up Visit: 52%
- 6-month Visit: 71%
- 12-month Visit: 63%

N=82 N=52 N=38

Chin et al. Presented at Medical Dermatology Society 2017
Conclusion

• Mycosis fungoides has indolent course but some patients progress with poor prognosis
• Standard treatments are available but limited by cost and eventual lost of response
• Exciting new treatment options for patients in horizon
• Skin infections and pruritus are a significant cause of morbidity and mortality in these patients
Cutaneous Lymphoma Research Team

Madeleine Duvic, MD
Auris Huen, MD, PharmD
Carol Wilson, MSN, RN
Debbie Chow, MBA, BSC
Christopher Chan, BS

Not pictured: Yilei Gong, MD, Lee Yean Wong, PhD

Medical Oncology:
Swaminathan Iyer, MD

Radiation Oncology:
Bouthaina Dabaja, MD, Jill Gunther, MD, PhD
Thank you